A 53 l
ARMY RESEARCH [ABORATORY ‘ | R

yScalable, a Code for Calculating Probability of
Incapacitation for Multi-Round Munitions

by Robert J. Yager

ARL-TR-6297 January 2013

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6297 January 2013

yScalable, a Code for Calculating Probability of
Incapacitation for Multi-Round Munitions

Robert J. Yager
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2013 Final March 2012—September 2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
yScalable, a Code for Calculating Probability of Incapacitation for Multi-Round

Munitions 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Robert J. Yager AHB80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: RDRL-WML-A ARL-TR-6297

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

yScalable is a stand-alone C++ code that can be used to calculate Probability of Incapacitation (PI) values for a barrage of
multi-round munitions deployed against a fixed set of personnel targets. Functions and methodologies that were developed to
evaluate high-explosive-munition lethality and collateral damage have been adapted and extended to provide analytic
capabilities that didn’t previously exist.

15. SUBJECT TERMS
CASRED, C++ probability of incapacitation, multiple detonation warheads

17. LIMITATION | 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Robert J. Yager
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uu 30 410-278-6689

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

Contents

List of Figures v
List of Tables Vi
Acknowledgments vii
1. Introduction 1
2. Definitions 1
3. Simplifying Assumptions 2
4. Methodology 2
5. Geometry 2
5.1 Target LOCALIONS......ceiiieeieiieiie ettt ettt s te et e e s beesbe e e sra e teereesbeenteeneesres 3
5.2 Munition-ReferenCe LOCALIONS........civiieiieiieiesee et ste et sie e sree e nee e nnes 3
5.3 Round-Detonation LOCALIONScccceiiiiuiiinieieienie ettt sneeneas 3
6. InputFiles 4
6.1 MaStEr-INPUL FIlE ... ere s 4
6.2 Munition-AImPOoINt FIle ..o 5
6.3 ROUNA-Detonation FIleccoiiiiiiii e 5
5.4 Target-LoCation File ..o 6
8.5 PI-Grit FIlB. .ottt 6
7. Output Files 8
7.1 Average Number of Incapacitations Per Iteration...........ccccccvevieiiieiie i, 8
T2 AVETAGE Pl ettt 8
7.3 Probability of Incapacitating 100% Of TargetsS........cccocvevieiiieiie i 8
7.4 Average Maximum Distance From Origin to IMPactcccoovvviineniiiiinieeeeiees 9

8. Running yScalable
Appendix. Code

Distribution List

11

20

List of Figures

Figure 1. Coordinates used by the yScalable program. ..., 3
Figure 2. MaSter-iNPUL FILE.ooiiiie e nre s 5
Figure 3. Sample munition-10cation file.ccccooiiiii i 5
Figure 4. Sample round-detonation file. ..o 6
Figure 5. Sample target-10Cation flle. ..o 6
Figure 6. Sample annotated P1-grid file. ... 7
Figure 7. Sample output file (with simulated Values).ccooiiiiiiiniic e, 8

List of Tables

Table 1. MaSter-INPUL FHLE.oouiiee e 4

Vi

Acknowledgments

The author would like to thank Mr. Richard Pearson of the U.S. Army Research Laboratory’s
Weapons and Materials Research Directorate for his technical and editorial recommendations.

vii

INTENTIONALLY LEFT BLANK.

viii

1. Introduction

yScalable is a stand-alone C++ code that can be used to calculate Probability of Incapacitation
(P1) values for a barrage of multi-round munitions deployed against a fixed set of personnel
targets. Functions and methodologies that were developed to evaluate high-explosive-munition
lethality and collateral damage! have been adapted and extended to provide analytic capabilities
that didn’t previously exist.

2. Definitions

To avoid confusion, several terms have been chosen to describe the different types of projectiles
and projectile groups that are associated with a multi-detonation warhead. This set of definitions
is not universally accepted and, thus, should be used with caution outside the scope of this report.

Fragment: A fragment is a piece of metal that has been produced as the result of the detonation
of an explosive projectile.

Round: A round is a device that contains a single explosive charge and produces fragments
when detonated.

Munition: A munition is a gun-launched projectile that may contain multiple rounds.

Barrage: A barrage is a set of munitions that are intended to work together to incapacitate a
single target set, where a single target set consists of multiple personnel targets.

Iteration: The yScalable program uses a Monte Carlo method to calculate probabilities. As is
the case with all Monte Carlo methods, random sampling is used to vary the outcome of a given
scenario. Each repetition of the scenario is referred to as an iteration.

1Oberle, W.; Butler, P. Development of a Performance Model to Evaluate High-Explosive Munition Lethality and Collateral
Damage; ARL-TR-4932; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 20009.

3. Simplifying Assumptions

« For a given iteration, the timing between barrages is assumed to be short enough that the
postures and locations of personnel targets do not change.

» The locations of personnel targets are known exactly.

+ Although the delivery error that is associated with munitions does affect round placement,
there is no delivery error that is specific to the rounds within a munition.

4. Methodology

For each iteration of a Monte Carlo run, two values are calculated.
1. The total number of target personnel that were incapacitated, and

2. The distance from the origin to the detonation point of the round that landed the farthest
from the origin.

The above two values are used to calculate four values for the entire Monte-Carlo simulation.
1. The average number of personnel that were incapacitated per iteration,
2. The average probability of incapacitation,
3. The probability of incapacitating 100% of all targets, and
4

. The average maximum distance from the origin to a detonation.

5. Geometry

As shown in figure 1, two Cartesian coordinate systems are used by the yScalable program. A
primary coordinate system (shown in blue) is used to specify target locations and munition
reference locations. Secondary coordinate systems (shown in red) are used to specify round-
detonation locations. Both coordinate systems are assumed to lie in the ground plane, thus all
locations are specified in two dimensions.

XA
X
X’
% o [*
y',
* o
X
" y

o target
A munition reference 4
@ round detonation

Figure 1. Coordinates used by the yScalable program.

5.1 Target Locations

Target locations are specified in target-location files (see section 6.4) and are referenced to the
primary coordinate system. Exactly one personnel target is assumed to exist at each target
location. Target-location error is assumed to be zero.

5.2 Munition-Reference Locations

Munition-reference locations specify the origins of secondary Cartesian coordinate systems.
They allow round-detonation locations to be varied without disturbing overall round-detonation
patterns. Munition-reference locations are obtained by combining the munition aimpoints that
are found in munition-aimpoint files (see section 6.2) with a randomly chosen offset. Offsets are
selected by drawing two normally-distributed random numbers, each with a standard deviation
that is uniquely determined by the Circular Error Probable (CEP) for the simulation. CEP values
are specified in master-input files (see section 6.1). Equation 1 shows the relationship between
standard deviation and CEP.

1

o, Gy =WCEP (1)

5.3 Round-Detonation Locations

Round-detonation locations specify the detonation points of rounds with respect to munition-
reference locations (i.e., they are specified in secondary coordinates). Although there is no
explicit error associated with round-detonation locations, their locations are affected by the CEP
that is specified for munition aimpoints.

6. Input Files

The yScalable program requires five input files: one master input file and four auxiliary files.

6.1 Master-Input File

The master-input file specifies all scenario parameters, as well as the names of four auxiliary
files. Table 1 gives a line-by-line description of the master-input file, while figure 2 presents a
sample master-input file. Three types of lines are present in the master-input file. Each type is
color coded to aid in identification.

Comment Lines: Comment lines must be present in the master-input file, even if they are simply
blank lines. They can contain any information that the user deems helpful. They can begin with
any character.

Numeric Parameters: Lines containing numeric parameters must begin with a number.
Comments are allowed to follow the numerical values but must be separated from numeric
values by one or more spaces. No special symbol is required to denote a comment.

Auxiliary-File Names: Lines containing the names of auxiliary files must begin with the path
and name of an auxiliary file. Comments are not allowed.

Table 1. Master-input file.

Line Description
1 comment line
2 comment line
3 | This line specifies the number of calls used to initialize the pseudorandom number generator, thus

allowing the user to specify the starting point for the sequence of pseudorandom numbers that is generated
by the pseudo-random number generator.

This line specifies the Circular Error Probable (CEP) for all munitions (note that CEP for rounds is 0.0).

This line specifies the number of iterations that will be performed in the Monte Carlo simulation.

This line specifies the number of munitions per barrage.

4
5
6 | This line specifies the number of barrages per iteration.
7
8

comment line

9 This line specifies the path and name of a munition-location file.

10 | This line specifies the number of rounds per munition.

11 | comment line

12 | This line specifies the path and name of a round-detonation file.

13 | This line specifies the number of targets in the target set.

14 | comment line

15 | This line specifies the path and name of a target-location file.

16 | comment line

17 | This line specifies the path and name of a PI-grid file.

This file was created automatically on 2012-01-23 at 12:47:34

using the BillModIn.exe program.

40000 # Number of calls to initialize random number generator
10.00 # CEP for munitiions (CEP for rounds is 0)

100000 # Number of iterations

1 # Number of barrages per iteration

3 # Number of munitions per barrage

Next line is the munitions location file

munition files\1l.mun

1 # Number of rounds per munition

Next line is the location of the rounds within a single munition
weapon directories\155\155.rnd

30 # Number of targets

Next line is the IC formation locations file

target files\tgtlplatoonv30Oman.txt

Next line is the Pi grid table for the given range

weapon directories\155\polarbaseH6.abm

Figure 2. Master-input file.

6.2 Munition-Aimpoint File

Munition-aimpoint files specify the munition aimpoints that are described in section 5.2. Recall
that munition aimpoints are unperturbed munition-reference locations. Figure 3 presents a
sample munition-aimpoint file. Each line of the file represents the aimpoint of a munition in the
primary coordinate system. Two entries are required per line. The first entry is the x-coordinate
of the munition, the second entry is the y-coordinate. Note that the aimpoint file may contain
more aimpoints than the number of munitions specified in the master-input file. If that is the
case, then munition aimpoints are taken from the beginning of the munition aimpoint file until
the required number of aimpoints has been reached.

0.0 0.0
10.0 10.0
-10.0 -10.0

Figure 3. Sample munition-location file.

6.3 Round-Detonation File

Round-detonation files specify the detonation locations of rounds with respect to munition-
reference locations.

Figure 4 presents a sample round-detonation file. Each line of the file represents the detonation
location of a round in a secondary coordinate system. Two entries are required per line. The
first entry is the x-coordinate, the second entry is the y-coordinate. Note that the round-
detonation file may contain more detonation points than the number of rounds specified in the
master-input file. If that is the case, then round-detonation points are taken from the beginning
of the round-detonation file until the required number of detonation points has been reached.

Figure 4. Sample round-detonation file.

5.4 Target-Location File

Target-location files specify the locations of all personnel targets. Each line of the file represents
the location of a single target in the primary coordinate system. Two entries are required per
line. The first entry is the x-coordinate, the second entry is the y-coordinate. Note that the
target-location file may contain more target locations than the number of targets specified in the
master-input file. If that is the case, then target locations are taken from the beginning of the
target-location file until the required number of target locations has been reached.

00

-12.7 0
12.7 0
-7.16 6.36
7.16 6.36

Figure 5. Sample target-location file.

6.5 PI-Grid File

Pl-grid files contain tabulated PI values as a function of distance from a detonation and an
azimuthal angle that is referenced from a fragmentation round’s velocity vector at the time of
impact. PI-grid files can be produced by several different sources including CASRED,?
MUVES-S2,® and JIMAE.* Figure 6 presents a sample Pl-grid file.

ZButIer, S. Casualty Reduction (CASRED) Model - Source Code Documentation; U.S. Army Materiel Systems Analysis
Activity, 1975.

3Yager, R.J. A C++ Postprocessor for Modifying Probability-of-Kill Grids Created by the Joint Mean Area of Effects
(JMAE) Model; ARL-TR-4982; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2009.

4Yager, R.J. A C++ Postprocessor for Converting MUVES-S2 Vehicle-Centered Lethality Grids to Detonation-Centered
Grids; ARL-TR-5448; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2011.

f:ft."fr‘]a“‘?” case number terminal velocity |wea on name| | PI criterial
elf%e:)(m (in feet/second) k flags
CASE 1|, [40]. METERS, VT =\3772.0 FT/ SEC BH7

0.000 20.00 [800.0 2.86000

1.000000 /ﬂ
0. 1080 O/ ninimum rvaluel] maximum r-valuef Mmaximum r- |{number of r{["number of |{ number || total L [angle of falll1
0.10D00| for logarithmic fors;ggzztzlonrwlc ’ value ﬁt)‘r d | valu_etrrs] in r—vglues in ogn[;tiée;r ntgp:)er 1 ((in degrees)
0.2 fooo sston it | i e | s SEr it e 25| I, 0000401
0.1¢000E+01 0.100(for linear section)) TUUETU I (counting the counting || 0°to [UT U.1 0000E+01
0.1P000E+01 0.100 (in feet) 000E+01 (maximumr{ the 1809 101 0.97924E+00
0.28641E-01 0.00000E+00 0.00000E+00 cﬁ&;ﬁﬁ? ﬂxmygf0000E+oo 0.00000E+00
0.$0000E+00 0.00000E+00 0.00000E+00 " gection || the linear |0OCCE+00 0.00000E+00
0 priaeas—aa— 00000E+00 0.00000E+00 (=UUUUUE{ section [0000E+00 0.00000E+00
0| detonation, |.00000E+00 0.00000E+00 0.00000EFUU U-U0000E+00 0.00000E+00
0] measuredinthe | 00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0 W%ﬁﬂjﬁ&f“°.00000E+oo 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0 values” (in feet) |- 00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0 X00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.180000E+00 0.00000E+00 0.00000E+00 0.46825E-07 0.46825E-07 0.46825E-07
0.\6826E-07 0.46826E-07 0.46826E-07 0.46826E-07 0.46826E-07 0.46825E-07
0 825E-07 [Pl values for r = 1.820564 feet and for ascending polar-angle values (starting with 0°) |

1.820564
0.10000E+0L 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01
0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01
0.1P000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01
0.1D000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01
0.9%4999E+00 0.92111E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.0d000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00P00E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00400E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00400E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.000{00E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.000POE+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.46741E-07 0.46741E-07 0.46741E-07 0.46741E-07 0.46741E-07
0.46741E-07

[a portion of the table has been removed]
0.15735E-03 0.15933E-03 0.34046E-03 0.32127E-03 0.23862E-03 0.27877E-03
0.12219E-03 0.11448E-03 0.98045E-04 0,042778_04 0 02119804 0 14070803
0.15186E-03 0.14887E-03 0.17639E-03 0| V, [The polar angle (9)is | {03
0.18633E-03 0.26321E-03 0.24879E-03 0| measured in the 04
0.67011E-04 0.10491E-10 0.94247E-11 0] r ground plane relative. |y 1
0.00000E+00 0.00000E+00 0.00000E+00 0| component of the 00
0.00000E+00 0.00000E+00 0.00000E+00 0. ﬁ;gfhwmdw 00
0.00000E+00 0.00000E+00 0.00000E+00 0| ' 00
0.00000E+00 0.00000E+00 0.00000E+00 0 £ === 00
0.00000E+00 0.00000E+00 0.00000E+00 0. 15 e symmetric for The origin of the 00
0.00000E+00 0.00000E+00 O0.00000E+0Q 0. | positive and negative coordinate system is 00
0.00000E+00 0.00000E+00 0.00000E+00 0 fff vauesctatse [t oy e | oo
0.00000E+00 0.00000E+00 0.00000E+00 0. 10°. 00
0.00000E+00 0.00000E+00 0.00000E+00 0| 00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00

Figure 6. Sample annotated PI-grid file.

7. Output Files

Each time that the yScalable program is run, a single output file is created. Output files contain
the date and time that the file was created, a restatement of the input parameters and auxiliary
filenames contained in the master-input file, and four values that represent a summary of the
scenario. Figure 7 presents a sample yScalable output file.

Date Run: 01/24/12,Time: 08:33:15

Input File: input files temp\SampleMI.txt

Target Formation Location File: target files\SampleTarget.txt
Munition Location File: munition files\Sample.mun

Round Location File: weapon directories\Sample.rnd

Using P(i) file: weapon directories\Sample.abm

The average number of incapacitations per iteration is: 30.0000
The average Pi is: 0.9500

The probability of incapacitating 100% of targets is: 0.9500
The average maximum distance from origin to impact is: 30.0000

The number of iterations is: 100000

The number of barrages per iteration is: 5
The number of munitions per barrage is: 3
The number of rounds per munition is: 1

Figure 7. Sample output file (with simulated values).

7.1 Average Number of Incapacitations Per Iteration

In order to calculate the average number of incapacitations per iteration, a list that tracks whether
or not each target has been incapacited in a given Monte Carlo iteration is used. At the end of
each iteration, the total number of incapacitations is counted. This method ensures that, for a
given iteration, no target is counted as having been incapacitated more than once.

7.2 Average PI

The average P1 is calculated by dividing the average number of incapacitations per iteration by
the number of targets.

7.3 Probability of Incapacitating 100% of Targets

For each iteration, it is determined whether or not all of the targets were incapacitated. The
probability of incapacitating 100% of targets is then calculated by dividing the number of times
that all of the targets were incapacitated by the number of iterations.

7.4 Average Maximum Distance From Origin to Impact

For each iteration, the distance from the origin to the impact point of each round is calculated,
then the maximum distance is stored. These values are used to calculate the average maximum
distance from the origin to impact.

8. Running yScalable

The yScalable program can be run directly from the command line or from a script. To start the
program type the name of the compiled executable file followed by the name of the master-input
file followed by the name of the output file (e.g., “y_scalable.exe sample_input.txt

sample output.txt”).

INTENTIONALLY LEFT BLANK.

10

Appendix. Code

This appendix appears in its original form, without editorial change.

11

y_scalable_main.cc

[R A A A KKK A KKK AR KR KA KA KA KKK AR K KK K S K KK K KK o KK K

* yScalable *
* Rob Yager, 10JAN2011 (last updated 24JAN2012) *
sk ks ok ok sk kool ok skl sk sk ok skl sk skl sk sk sk ok sk sk stk sk sk sk sk sk sk sk sk stk kst sk sk koot skl kok ok
#include "oberle_aimpoint_tools.h"

#include <vector>
[Rk ko kR ook sk skok sk okokkokok ok ok Rk GTRUCTS AND TYPEDE F S sk sk sk kst sk s s ks ok stk s sk ke skeok ok ok /

struct PAIR{double X , Y5}/ / ccenimiiitieenennnneeeeeeennns x-y ordered pair
typedef vector<PAIR> PAIRS;// ...ttt iineennneennns 1D array of PAIRs
/***********************GLOBALJ USER-DEFINED pARAMETERS************************/
char cMunsInBar[150];//....c.cccvviieennn.. file containing aim points of munitions
char cRASINMUN[15@];// v vviue i rnnnennnn file containing aim points of rounds
char cTargetLocation[150];//...... file containing locations of personnel targets
char cPiTablel[150];// . cc vt ittt ieineenneennnns file containing Pi table
double dPiTablel[200][92]={0};// ccct ittt ittt Pi table
int iRandu;//.......... number of calls to initialize the random-number generator
int iterations;//.. .ot total number of scenarios to be ran
int ANUMBAr;//. v v v e number of barrages in each iteration
int INUMMUN;// .o e e number of munitions in each barrage
int INUMRAS;// .ottt et number of rounds within each munition
int INUMTArgetsS; // v i i ittt i ittt number of personnel targets
int iLinesPiTablel;//....cviiiiiiiiiiiieeeeeennns number of lines in the Pi table
double dCep;// ettt i i i e e i i e CEP for munitions
PAIRS MUNS;//....ccvvvnnn. locations of aim points for munitions (from cMunsInBar)
PAIRS RNDS;//......... offset locations of aim points for rounds (from cRdsInMun)
PAIRS TARS;//..cvvviiinnnn. locations of personnel targets (from cTargetLocation)
/*****************************GLOBAL VARIABLES*********************************/
double avg_incaps=0;//....cciiiiiiiiiiiiiiinnn. average number of incapacitations
double avg r max=0;//............. average maximum distance from origin to impact
double prob_100=0;//............... probability of incapacitating 100% of targets
/****************************FUNCTION pROTOTYpES*******************************/
void get_vars(char* argv[]);// «ccceeeiiieennnn. reads variables from input files
double rndm(double avg,double std);//......... overload of Bill's rndm() function
bool incap(PAIR target,PAIR detonation);//....... output of true => incapacitated
void output(char®* argvl]);// ceeeemeeininnnnnnneennnnns writes an output file

/************************************MAIN**************************************/
int main(int argc,char* argv[]){
J/mmmmmm e READ THE INPUT FILE------------mmmmmmmmo -

)= INITITIALIZE THE RANDOM NUMBER GENERATOR-------=-=-------------
for(int i=@;i<iRandu;++i) rndm(0,1);
[/-======= CALCULATE THE AVERAGE NUMBER OF INCAPACITATIONS PER BARRAGE---------
double sigma=dcep*0.8493218002880191;//..... 1/sqrt(2*1n(2))=0.8493218002880191
for(int i=0@;i<iterations;++i){//. ..., loop through all iterations
double r_max=0;//..... maximum distance (per iteration) from origin to impact
vector <bool> INCAPS(iNumTargets , false);//.....c.cvvvvnn. incapacitated list
for(int i2=0;i2<iNumBar;++i2){//...... loop through all barrages in iteration
for(int j=0;j<iNumMun;++3){//........ loop through all munitions in barrage
//- - - - - - calculate the location of the jth munition - - - - - - - -
PAIR MUN = {MUNS[j].x + rndm(®@,sigma) , MUNS[]j].y + rndm(0@,sigma)};
for(int k=0;k<iNumRds;++k){//........ loop through all rounds in munition
/- - - - - - calculate the location of the kth round- - - - - - - - -
PAIR RND = {MUN.x + RNDS[k].x , MUN.y + RNDS[k].y};//round CEP is zero
r_max=max(r_max,hypot (RND.x,RND.y));

12

for(int 1=0;1<iNumTargets;++1)//.............. loop through all targets
if(!INCAPS[1]) INCAPS[1] = incap(TARS[1],RND);}}}//...incapacitated?

//- - - ---- - maintain cumulative moving averages- - - - - - - - - - - -
int n=0;//........ n is the number of incapacitations for the current barrage
for(int 1=0;1<iNumTargets;++1)if(INCAPS[1])N++;// e i iennnnn.. tally n
avg_incaps=(avg_incaps*i+n)/(i+1);//....cumulative avg. # of incapacitations

avg_r_max=(avg_r_max*i+r_max)/(i+1);//average max dist from origin to impact
prob_100=((n==iNumTargets?1:0)+i*prob_100)/(i+1);//cumul. avg of 100% incaps
if(i%1000==999)printf("\rIn iteration number: %d",i+1);}

e WRITE THE OUTPUT FILE-------------mmmmmmmmm e e -

output(argv);

return 0;

void get_vars(char* argv[]){

int i;

ifstream inFilel;

char cLine[150];

inFilel.open(argv[1l], ios::in | ios::binary);//Input File Name

if(!inFilel)

{

n

cerr << "Cannot open input file:
cerr << "Program is terminating.
exit(1);

<< argv[1l] << endl;
<< endl;

n

}

inFilel.getline(cLine,149); //****¥* Reads comment line #1
inFilel.getline(cLine,149); //****¥* Reads comment line #2

inFilel »>> iRandu ; //*¥**** Random Number initializer
inFilel.getline(cLine,149); //***** Read rest of line
inFilel>>dcep; //*¥*¥*¥** CEP for munitions
inFilel.getline(cLine,149); //*¥*¥*¥** Read rest of line
inFilel>>iterations; //*¥*¥*¥** number of iterations
inFilel.getline(cLine,149); //*¥*¥*¥** Read rest of line
inFilel>>iNumBar; //*¥**** number of barrages
inFilel.getline(cLine,149); //***** Read rest of line
inFile1>>iNumMun; //*¥**** number of munitions

inFilel.getline(cLine,149); //*¥*¥*¥** Read rest of line
inFilel.getline(cLine,149); //****¥* Reads comment line #3
inFilel.getline(cMunsInBar,149);//***** Read location of munition in barrage
//*¥*¥*** Need to remove any carriage returns from string and replace with \@
for(i = @; cMunsInBar[i]; i++)
{
if((int)cMunsInBar[i] == 13) cMunsInBar[i] = '\@';

inFilel>>iNumRds; //*¥**** number of Rounds

inFilel.getline(cLine,149); //***** Read rest of line

inFilel.getline(cLine,149); //****¥* Reads comment line #4

inFilel.getline(cRdsInMun,149); //***** Read location of rounds in munition
//*¥*¥*** Need to remove any carriage returns from string and replace with \@
for(i = 0; cRdsInMun[i]; i++)

{
if((int)cRdsInMun[i] == 13) cRdsInMun[i] = '\@';
inFilel>>iNumTargets; //*¥*¥*** number of Targets
inFilel.getline(cLine,149); //*¥*¥*** Read rest of line
inFilel.getline(cLine,149); //*¥**¥*¥* Read comment line #5

inFilel.getline(cTargetLocation,149); // Read Target Location Table file name
//*¥*¥*¥** Need to remove any carriage returns from string and replace with \@
for(i = @; cTargetLocation[i]; i++)

13

if((int)cTargetLocation[i] == 13) cTargetLocation[i] = '\@"';

inFilel.getline(clLine,149); //*¥*¥*** Read comment line #6
inFilel.getline(cPiTablel,149); //***** Read Pi Table file name
//*¥*¥*** Need to remove any carriage returns from string and replace with \@
for(i = @; cPiTablel[i]; i++)

if((int)cPiTablel[i] == 13) cPiTablel[i] = '\0@';

inFilel.close();
//***

//*¥**** Read munition location within a barrage *¥¥kiixkkkkdkkik
[/ R sk sk stk sk skl ok stk skl skl sk ok skl sk ok sk skl sk ok sk sk s ok skl sk sk sk ok ok

inFilel.open(cMunsInBar,ios::in | ios::binary);
if(!inFilel)

{
cerr << "Cannot open input file: " << cMunsInBar << endl;
cerr << "Program is terminating." << endl;
exit(1);
}
for(i = 0; i < iNumMun; i++)

{
MUNS.push_back(PAIR());

inFilel >> MUNS[i].x >> MUNS[i].y;
}

inFilel.close();
[/X kst sk sk stk ok stk ok sk kokskok sk kokskok ok skl kst sk skekoskkok stk sk ok stk ok ok

//*¥**¥** Read round location within a mnition *¥¥kkrdskoksrdokdokkdokkx
//***

inFilel.open(cRdsInMun,ios::in | ios::binary);
if(!inFilel)

{
cerr << "Cannot open input file: " << cRdsInMun << endl;
cerr << "Program is terminating." << endl;
exit(1);
}
for(i = ©; i < iNumRds; i++)

{
RNDS . push_back (PAIR());

inFilel >> RNDS[i].x >> RNDS[i].y;
}

inFilel.close();
//***

/] X¥FEx%k%k% Ragd Target Locations ¥k skokskskskokoskok ok ko ok ok skok ok ok okok ok ok ok ook ok
[/ Xk kst ok stk ok stk ok sk ok kst sk kbl ok skl kokskosk sk stekskkok stk sk ok stk sk ok
inFilel.open(cTargetLocation,ios::in | ios::binary);

if(!inFilel)

{
cerr << "Cannot open input file: " << cTargetlLocation << endl;
cerr << "Program is terminating." << endl;
exit(1);
}
for(i = ©; i < iNumTargets; i++)

{
TARS.push_back(PAIR());

inFilel >> TARS[i].x >> TARS[i].y;
}

14

inFilel.close();
[[FF ARkt skok s ok sk ok sk sk sk ook sk ok sk stk sk ok ok ok ok sk sk ks sk ok ok sk sk sk sk sk ok sk ok skok sk ok stk sk ok ok sk ok sk ok

J/*¥%%k%% The Pi table is pead **ksksrskorskokskoksoksrskonskok ko skohstok sk kok ook ok ok
//***
iLinesPiTablel = ReadPiTables(cPiTablel,dPiTablel);

[[FF kot skok sk ok sk ok sk sk sk ook sk ok sk stk sk ok ok ok ok sk sk sk ok ok ok sk sk sk sk sk ok sk ok sk ok skok stk sk ok ok sk ok sk ok

double rndm(double avg,double std){//......... overload of Bill's rndm() function
long double x;
rndm(avg,std, x);
return Xx;

bool incap(PAIR target,PAIR detonation){
double distance,angle;
DetermineDistanceAngle(target.x,target.y,detonation.x,detonation.y,

distance,angle);
return bDeterminePiV(distance,angle,ilLinesPiTablel,dPiTablel);

void output(char* argv[]){
ofstream outFile;
outFile.open(argv[2], ios::out | ios::binary);//Output File Name
char dateStr [9];
char timeStr [9];

_strdate_s(dateStr);

_strtime_s(timeStr);

outFile << "Date Run: " << dateStr <«

outFile << "Input File: "

outFile << "Target Formation Location File: << cTargetLocation << endl;

outFile << "Munition Location File: " << cMunsInBar << endl;

outFile << "Round Location File: " << cRdsInMun << endl;

outFile << "Using P(i) file: " << cPiTablel << endl << endl;

outFile.width(6);

outFile.precision(4);

outFile.setf(cout.fixed);

outFile << "The average number of incapacitations per iteration is:
<< avg_incaps << endl;

outFile << "The average Pi is:

outFile << "The probability of incapacitating 100% of targets is:
<< prob_100 << endl;

outFile << "The average maximum distance from origin to impact is:
<< avg_r_max << endl << endl;

outFile << "The number of iterations is:

outFile << "The number of barrages per iteration is:

outFile << "The number of munitions per barrage is:

outFile << "The number of rounds per munition is: "

outFile.close();

,Time: << timeStr << endl;

<< argv[1l] << endl;

<< avg_incaps/iNumTargets << endl;

n
"

<< iterations << endl;

" << iNumBar << endl;
<< iNumMun << endl;
<< iNumRds << endl;

oberle_aimpoint_tools.h

#ifndef OBERLE_AIMPOINT_TOOLS H_//....cvvvvninnnn. #define guard (yager, 2012-01-10)
#tdefine OBERLE_AIMPOINT TOOLS H //...cvviiiinnnn. #define guard (yager, 2012-01-10)
#include "Oberle_Nov_2010.h"

//*¥**** Global Varialbes and Fcn Prototypes Used in the Progam

bool bCheckPi;

15

int ReadPiTables(char *,double [200][92]); // Returns number of lines in table
bool bDeterminePiV(double,double,int,double [200][92]);
void DetermineDistanceAngle(double,double,double,double, double &, double &);

int ReadPiTables(char * fileNamel, double dPiTab[200][92])
{

char cLine[120];

double dHeight, dMaxDist, dDegree, dAngle, X, y;

int i, j, k, iNum, iNumB,iFileCount = ©;

ifstream F2P(fileNamel,ios::in | ios::binary);
if(!F2P)
{

<< fileNamel << endl;
<< endl;

cerr << "Cannot open input file:
cerr << "Program is terminating.
exit(1);

}
F2P.getline(cLine,120); //Reads the header line - one time only

if(bCheckPi) cout << cLine << endl;
F2P >> dHeight >> x >> y >> dMaxDist >> dDegree >> i >> j >> iNum >> iNumB >> k
>> dAngle;
F2P.getline(cLine,120);
if(bCheckPi)

{

n

cout << "iNum: << 1iNum << endl;
cout << "iNumB: " << iNumB << endl;

for(i = @; i < iNumB; i++) // Number of distance blocks
{
F2P >> x; // Read the distance from impact point
dPiTab[i][@] = x; // Write distance from impact point to table
for(j = 0; j < iNum; j++)
{
F2P >> y;
dPiTab[i][j+1] = y; // Write Pi for angle
}
}
F2P.close();

if(bCheckPi)
{
for(j=0;j<iNumB;j++)
cout << "Line :" << j << "\t" << dPiTab[j][@] << "\t" << dPiTab[j][1] <«
"\t" << dPiTab[j][2] << "\t" << dPiTab[j][iNum-1] << "\t" << dPiTab[j][iNum] << endl;
system("pause");

}

return iNumB;

}
bool bDeterminePiV(double r, double theta,int iLines,double dPiTab[200][92])

{
int ilLowAngle,ilowRadius,i;
double dAngle,dProbI;
double A[4][3];
long double dR;

16

bool iFlag = false;

//¥*¥*¥** Start by determining the index in ¥¥¥iiskdokkkdkkxxxiik
//***** in -the table 'FOl" the angle sk 3k 3k sk 3k 3k Sk ok 3k Sk ok >k sk ok >k Skook >k 3k skook >k skook sk sk ok ok
//*¥*¥*¥%%* Convert angle to degr‘ees sk ok sk ok

dAngle = dRad2Deg(theta); //***** convert angle from radians to degrees

iLowAngle = (int) floor(dAngle/2 + 1); //***** Angle index is ilLowAngle and
ilowAngle+1

if(iLowAngle == 91) ilLowAngle = 90; //***** Just in case angle is 180 degrees

//*¥*¥*** Determine that range is in table
if((r < @) || (r > dPiTab[ilLines-1][0])) //Range not in table.

{

//cout << "Returned a false on distance\n";
return false;
//return 0.0;

}
iFlag = false;

if (r < dPiTab[@][@]) // Positive but less than min distance

{
r = dPiTab[@][0];

¥
if(!iFlag)
{
for(i = ©; i < iLines; i++)
{
if(r > dPiTab[i][@])
{
continue;
}
else
{
ilowRadius = i-1; //***** Radius index is ilLowRadius and ilLowRadius+1
break;
}
if(iLowRadius == -1) iLowRadius = 0;
}
if(!iFlag)

A[@][0] = (iLowAngle -1) * 2; //Angle
A[@][1] = dPiTab[iLowRadius][@]; //Radius
A[@][2] = dPiTab[iLowRadius][iLowAngle]; //Pi

A[1][0] = iLowAngle * 2;
A[1][1] = dPiTab[iLowRadius][@];
A[1][2] = dPiTab[iLowRadius][iLowAngle+1];

A[2][0] = iLowAngle * 2;

A[2][1] = dPiTab[iLowRadius+1][0];
A[2][2] = dPiTab[iLowRadius+1][iLowAngle+1];

17

A[3][0] = (iLowAngle -1) * 2;
A[3][1] = dPiTab[iLowRadius+1][@];
A[3][2] = dPiTab[iLowRadius+1][iLowAngle];

}
else
{
A[0][0] = (iLowAngle -1) * 2; //Angle
A[@][1] = o; //Radius
A[@][2] = 1; //dPiTab[iLowRadius][iLowAngle]; //Pi
A[1][@] = iLowAngle * 2;
A[1][1] = e;
A[1][2] = 1; //dPiTab[iLowRadius][iLowAngle+1];
A[2][@] = iLowAngle * 2;
A[2][1] = dPiTab[@][@];
A[2][2] = dPiTab[@][iLowAngle+1];
A[3][0] = (iLowAngle -1) * 2;
A[3][1] = dPiTab[@][@];
A[3][2] = dPiTab[@][iLowAngle];
}
dProbI = dBilinear(dAngle,r,A);
randu(0.0,1.0,dR);
//cout << "the random number is: " << " " << dR << endl;

if(dR <= dProbI) return true;
return false;

//return dProbI;
}

void DetermineDistanceAngle(double dXTemp, double dYTemp,double dX,double dY,double
&distance,double &angle)
{

double dTempl,dTemp2,dTemp3,dTemp4,distanceM;

double TrueAngle;

dTempl = dXTemp - dX;
dTemp2 = dYTemp - dY;
//the vector (dTempl,dTemp2) is the vector from the impact point to the target i

dTemp3 = (dXTemp - dX)*(dXTemp - dX);//square of the difference in x poisition (x
is range)

dTemp4 = (dYTemp - dY)*(dYTemp - dY);//square of the difference in y poisition (y
is azimuth)

dTemp4 = sqrt(dTemp3+dTemp4);//distance between the impact point and target i in
meters

distanceM = dTemp4;//distance in meters

//*¥**** now the vector <1,0> is the direction of the round; i.e., have no yaw

information so
//*¥*¥*** assuming round is flying in a straight line parallel to the range axis.

18

//***** Thus, the dot product between the vector <1,0> and the vector
//*¥*¥*¥** from the impact point to the target location is dXTempl.
dTemp4 = dTempl/distanceM;//dot product divided by distance no units

angle = acos(dTemp4); //Angle between vectors; this value is between © and Pi
[0,180]
//*¥*¥*** degrees; this value is in radians; © degrees is along the range axis;

if(dYTemp < dY)// gives the true angle between the impact pt and target;
J/*¥*¥*¥** will use negative angles between © and 180 instead of 180 to 359
//*¥*¥*¥** informational only

{
}

distance = distanceM/.3048;// Convert from meters to feet (could mul by
3.280839895)
if(distance <= @) distance =.0001;

TrueAngle = - angle;

return;

}

HeNdif/ /.ot e e e e end #define guard (yager, 2012-01-10)

19

NO. OF

COPIES ORGANIZATION

1
(PDF

only)

22
(20 HC
2 CD)

DEFENSE TECHNICAL
INFORMATION CTR

DTIC OCA

8725 JOHN J KINGMAN RD
STE 0944

FORT BELVOIR VA 22060-6218

DIRECTOR

US ARMY RESEARCH LAB
IMAL HRA

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
RDRL CIO LL

2800 POWDER MILL RD
ADELPHI MD 20783-1197

US ARMY ARDEC
AMSRD AAR AIS SA
D ERICSON

BLDG 12

PICATINNY ARSENAL NJ 07806-5000

US ARMY ARDEC

RDAR MEE W

A DANIELS

BLDG 3022

PICATINNY ARSENAL NJ 07806

ABERDEEN PROVING GROUND

DIR USARL
RDRL WM

P BAKER

P PLOSTINS
RDRL WML

M ZOLTOSKI
RDRL WML A

P BUTLER

W OBERLE (1 CD)

C PATTERSON

R PEARSON

L STROHM

R YAGER (4 HC, 1 CD)
RDRL WML B

J MORRIS
RDRL WML C

K MCNESBY
RDRL WML D

R BEYER
RDRL WML E

20

NO. OF
COPIES ORGANIZATION

P WEINACHT
RDRL WML F

T BROWN

D LYON
RDRL WML H

M FERMEN-COKER

JNEWILL

B SORENSEN

